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Index policies for shooting problems

K.D. Glazebrook and C. Kirkbride, Department of Management Science,
Management School, Lancaster University, UK,

H.M. Mitchell, School of Mathematics and Statistics,
Newcastle University, UK,

D.P. Gaver and P.A. Jacobs, Department of Operations Research,
Naval Postgraduate School, Monterey, USA.

Abstract

We consider a scenario in which a single Red wishes to shoot at a collection of Blue
targets, one at a time, to maximise some measure of return obtained from Blues killed
before Red’s own (possible) demise. Such a situation arises in various military contexts
such as the conduct of air defence by Red in the face of Blue SEAD (suppression of
enemy air defences). A class of decision processes called multi-armed bandits has
been previously deployed to develop optimal policies for Red in which she attaches
a calibrating (Gittins) index to each Blue target and optimally shoots next at the
Blue with largest index value. The current paper seeks to elucidate how a range
of developments of index theory are able to accommodate features of such problems
which are of practical military import. Such features include levels of risk to Red
which are policy dependent, Red having imperfect information about the Blues she
faces, an evolving population of Blue targets and the possibility of Red disengagement.
The paper concludes with a numerical study which both compares the performance of
(optimal) index policies to a range of competitors and also demonstrates the value to
Red of (optimal) disengagement.

1 Introduction

A multi-armed bandit problem arises when a single key resource (possibly an enemy defence
weapon system, here called Red) is available for allocation to a fixed collection of projects or
“bandits”. The latter may be enemy force elements (here called Blue) which are attempting
to penetrate space and attack assets guarded by Red. These projects evolve sequentially
and stochastically while in receipt of service (i.e. while the resource is allocated to them)
and obtain state dependent returns as they do so, but remain fixed (and gain nothing)
otherwise. Gittins and Jones (1974) elucidated the optimality of index policies for certain
classes of multi-armed bandit problems. Such policies attach a calibrating index to each
project, a function of that project’s state, and choose at each decision epoch to allocate
the resource to whichever project has the largest associated index. See also Gittins (1989).
An extensive literature exists outlining a range of extensions and developments of Gittins’
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classical work while various schemes for index computation have been proposed. See, for
example, Whittle (1980), Weber (1992), Katehakis and Veinott (1987) and Bertsimas and
Niño-Mora (1996).

Recently, Glazebrook and Washburn (2004) have discussed the utilisation of the multi-
armed bandit framework and the associated index policies to develop optimal shooting poli-
cies in a military environment. Here the “key resource” is a single shooter (Red) and the
“projects” form a fixed collection of targets (Blue). Specifically, think of Red as a ship or
other defence system and the Blues as a collection of attackers. Red’s goal is to so target
the Blues as to maximise the expected number (or value) of kills achieved. Manor and Kress
(1997) had previously utilised the theory of multi-armed bandits to analyse a shooting prob-
lem in which Red receives incomplete information regarding the outcome of successive shots.
If a shot is unsuccessful (the Blue target is not killed) then Red receives no feedback, while
if the target is killed, that fact is confirmed to Red with probability less than one. Manor
and Kress (1997) demonstrate the optimality of a form of index policy (the greedy shooting
policy) for their setup.

Consider a military scenario discussed by Barkdoll et al. (2002) which is asymmetric
between enemy forces. Blue has established air superiority in some region and Red is a
surface-to-air missile system (SAM) seeking to disrupt Blue’s air campaign. The U.S. Joint
Chiefs of Staff uses the term “reactive” or “opportune” suppression of enemy air defences
(SEAD). A U.S. Marine Corps Warfighting Publication (2001) gives a background summary
of SEAD operations. In Barkdoll et al. (2002) every Red shot exposes her to danger from a
stand-off Blue shooter. Red attaches a value to every Blue she faces which could, for example,
reflect the damage which would be caused should that Blue penetrate her defences. We take
Red’s goal to be maximisation of the expected value of Blues killed (rendered ineffective)
before her own (possible) demise, thus minimising the cost of Blue leakage to (possible)
valuable Red targets. Many important features of such situations present a challenge to
analysis. Several have gone largely unconsidered in previous work. It is the prime purpose
of the current paper to elucidate how a range of developments of index theory are able to
accommodate such features. They include the following:

(1) The level of danger to the Red SAM may vary according to the Blue targets she chooses.
For example, shooting at longer range Blues puts Red at greater risk to anti-radiation
missile (ARM) attack from Blue since a SAM will need to radiate longer to guide the
missile to its target. Red should plainly take account of such risks to herself in deciding
which Blue of those currently within range, to target next;

(2) Red may have imperfect information regarding the Blues she is facing, including the
efficacy of past shots;

(3) The value which Red attaches to a particular Blue may evolve during battle as, for
example, Red gains information about it and/or causes it damage. Operational value
tends to be dynamic and not well measured in monetary terms;

(4) The Blue targets which Red faces will change over time. Blues currently within range
may withdraw (or may penetrate Red’s defences) while new Blues may arrive;

(5) It may be that, such is the nature of Blues which Red currently faces that her best
option is to disengage (i.e., defer active engagement) thus reducing her current risks in
the interests of securing greater gains from attacking Blues which arrive later.
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We present models and analyses which illustrate all of the above. In every case, our goal is
to provide Red with an appropriate calibration of her options (including disengagement) at
all times.

The paper is structured as follows: In Section 2 we present a class of shooting problems
incorporating disengagement in which Red faces a collection of Blue SEAD targets which
arrive as a group. These problems take the form of generalised bandits, a type of multi-armed
bandit problem in which a form of reward dependence is induced between the constituent
projects or “bandits” via a multiplicatively separable structure. The models were originally
introduced by Nash (1980) and subsequently developed by Fay and Walrand (1991), Glaze-
brook and Greatrix (1995) and Crosbie and Glazebrook (2000a,b). Applications of Nash’s
model have recently been described by Dumitriu, Tetali and Winkler (2003) and by Katta
and Sethuraman (2004). We describe the nature of optimising index policies for Red. The
approach is illustrated in Section 3 by analyses of three models of independent interest.
Model 1 (in Section 3.1) is a Bayesian model in which Red is able to learn about the (true)
identity of the Blues she faces as the engagement proceeds. Blues may withdraw while under
fire. Model 2 (in Section 3.2) allows for partial/cumulative damage to each Blue target, while
Model 3 (in Section 3.3) extends Model 1 in allowing Red to supplement the information she
has about the Blues she faces by “looking” (imperfectly) at the most recently targeted Blue
after each shot. In Section 4 we discuss the value to Red of disengagement from targeting
the Blues currently present. To achieve this we propose two possible models for the future
Blues with which Red will be presented as a process extended over time. Both models yield
qualitatively similar insights, namely that the greater the opportunity for a surviving Red
to secure future gains from Blue kills, the more selective she should be about the targets to
be engaged now. Index theory enables us to quantify Red’s selectivity precisely. The paper
concludes in Section 5 with a numerical study which, inter alia, sheds light on the value to
Red of (optimal) disengagement.

2 A General Model for a Single Conflict with Disen-

gagement

A Red shooter has to plan a series of engagements with a finite fixed collection of N Blues.
At each decision epoch t ∈ N for which the conflict is still active, a still alive Red will either
disengage (i.e., suspend active engagement) and claim a return of Rd or will shoot at a
targeted Blue. In the former case shooting ceases while in the latter Red is exposed to the
possibility of being killed herself. Each shot takes a single time unit. Disengagement return
Rd may be understood as the future value available to an optimally shooting/disengaging
Red. How Rd could be set is discussed in Section 4. Choice of which Blue to attack will
depend not only upon which targets appear most vulnerable and likely to yield high returns
for Red but also which expose Red to little risk. An engagement may also incorporate,
for example, a look by Red to gain information on the state of the Blue targeted after she
has delivered her shot. She is assumed to have an infinite supply of shots (e.g., surface to
air missiles). Red will make her decisions on the basis of her observational history of past
engagements to date. Her goal is the maximisation of expected return received until her
own (possible) death. This is formulated as a discounted reward Markov decision problem
as follows:
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(i) X(t) = {X1(t), X2(t), . . . , XN(t), XN+1(t)} is the state of the system at time t ∈ N

and Xj(t) is the state of Blue j, 1 ≤ j ≤ N . We require that Xj(t) ∈ Ωj ∪ {ωj},
where Ωj is the (countable) space of possible descriptors of Red’s knowledge of Blue’s
status, while Xj(t) = ωj indicates that by time t, Red has been killed (i.e., rendered
ineffective) during an engagement in which she shot at Blue j, 1 ≤ j ≤ N . XN+1(t) is
an indicator which takes the value 0 if Red has disengaged prior to t and is 1 otherwise.
We assume that XN+1(0) = 1;

(ii) At each t ∈ N for which XN+1(t) = 1 and Xj(t) 6= ωj, 1 ≤ j ≤ N , (i.e. Red is still
alive and has not disengaged), Red must choose one of the actions a1, a2, . . . , aN , aN+1.
Choice of aj means that Red’s (t + 1)st engagement will target Blue j, 1 ≤ j ≤ N .
Choice of aN+1 indicates Red’s disengagement from further shooting. The above are
the only t ∈ N for which a decision by Red is required;

(iii) If at decision epoch t ∈ N action aj is taken, 1 ≤ j ≤ N , then Red observes a change
of Blue’s state Xj(t) → Xj(t+1) determined by some Markov law Pj. Note that state
space Ωj may contain some state ωj indicating that Blue is dead and that a still alive
Red knows this. In such cases, both ωj and ωj are absorbing states under Pj. Note
that when any action ak is taken at t, then Xl(t) = Xl(t+ 1), l 6= k;

(iv) The expected return achieved by Red when action aj, 1 ≤ j ≤ N , is taken at time
t ∈ N is βtRj{Xj(t)} where Rj : Ωj → R

+ is bounded and non-negative and β ∈ (0, 1)
is effectively a discount rate. The non-negative returns determined by function Rj will
reflect the operational value to Red of rendering Blue j ineffective. For example, Rj

may estimate the damage caused should a still alive Blue j penetrate Red’s defences.
Discount rate β will be set to reflect military-operational realities. For example, if Red
is exposed to threats other than those coming from Blue, then β can be taken to be
the probability that she survives this external threat for a single unit of time. See also
the comments at the end of this section. The return achieved when action aN+1 is
taken at time t ∈ N is βtRd.

A policy for Red is a rule for taking actions which takes account of the history of the pro-
cess (actions taken, states occupied) to date. The theory of stochastic dynamic programming
(see, for example, Puterman (1994)) guarantees the existence of an optimal policy which is
stationary, deterministic and Markov. However, we can say more. Consider a modification
of (i)-(iv) above which allows actions to be taken at all t ∈ N, but which guarantees that no
returns are gained beyond time

T = inf {t; Xj(t) = ωj for some 1 ≤ j ≤ N or XN+1(t) = 0} . (1)

This can be achieved by a modification to (iv) which requires that, should action aj be taken
at general time t ∈ N for some 1 ≤ j ≤ N , the resulting expected return is

βtRj {Xj(t)}

[

N
∏

k=1

I {Xk(t) 6= ωk}

]

XN+1(t), (2)

while should disengagement action aN+1 be taken at t ∈ N the expected return is

βtRd

[

N
∏

k=1

I {Xk(t) 6= ωk}

]

XN+1(t). (3)
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In (2) and (3) above, I(·) is an indicator taking the value 1 when the bracketed event
is observed. Plainly an optimal policy for any such modification will map directly to an
optimal policy for the process in (i)–(iv) above.

Now write ν for a policy for the above modification with ν(t) for the choice of action
made by ν at t. The total expected return under policy ν may be expressed as

Eν

(

∞
∑

t=0

βtRν(t)

{

Xν(t)(t)
}

[

N
∏

j=1

I {Xj(t) 6= ωj}

]

XN+1(t)

)

. (4)

The goal is to find policy ν∗ to maximise the expected return in (4). The multiplicatively
separable form of the objective means that the above falls within the class of generalised
bandits introduced by Nash (1980). Moreover, the facts that in our models rewards are non-
negative and that the quantities I{Xj(t) 6= ωj}, 1 ≤ j ≤ N and XN+1(t) can only decrease
in value as time proceeds imply that we are dealing with cases of Nash’s models which are
equivalent to semi-Markov versions of Gittins’ (1979,1989) classic multi-armed bandits. See,
for example, Fay and Walrand (1991). It then follows that there exists an optimal policy
for our problem in simple index form. We express our conclusion in Theorem 1, which also
utilises the fact that, while the conflict remains active, the disengagement action has fixed
index Rd.

Theorem 1 There exist functions Gj : Ωj → R
+ such that, while the conflict remains active

(i.e., prior to T ), Red optimally disengages if

Rd > max
1≤j≤N

Gj{Xj(t)} (5)

and otherwise optimally engages any Blue j∗ for which

Gj∗{Xj(t)} = max
1≤j≤N

Gj{Xj(t)}. (6)

The indices in (5), (6) are of Gittins type and are computable by a range of algorithms
including the “restart-in-x” approach of Katehakis and Veinott (1987). When the state
spaces Ωj, 1 ≤ j ≤ N , are finite the “largest-to-smallest” algorithm of Robinson (1982)
(equivalently, the adaptive greedy algorithm of Bertsimas and Niño-Mora (1996)) is available.
See also Gittins (1989).

To develop Gj(x) for some x ∈ Ωj, suppose that at t = 0 Blue j is in state x and is then
engaged continuously by Red up to some positive integer-valued stopping time τ defined on
Blue’s state process {Xj(t), t ≥ 0}. We write Rj(x, τ) for the expected reward earned by
Red during [0, τ) and also write

Sj(x, τ) = 1 − E [βτI {Xj(τ) 6= ωj} |Xj(0) = x] . (7)

To give the quantity in (7) a simple interpretation, suppose that discount rate β has the
interpretation given in (iv) above as the probability that Red survives an external threat for
a single unit of time. Under suitable independence assumptions, Sj(x, τ) is then seen to be
the probability that Red fails to survive her engagement with Blue during [0, τ). The index
Gj(x) is given by

Gj(x) = max
τ

{Rj(x, τ)/Sj(x, τ)} , x ∈ Ωj, (8)
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and is seen to balance the rewards which Red can earn from Blue j (as expressed by the
numerator on the r.h.s. of (8)) in state x against the risks posed (as expressed by the
denominator in (8)).

Comments

(a) Military-operational interpretations of discount rate β other than that identified in
(iv) above are certainly possible. Suppose, for example, that the Blue force withdraws
from the current conflict (at every epoch at which it is still active) with probability
ψ. Successive determinations in this regard are independent. Such Blue “withdrawal”
may take the form of leakage through Red’s defences with a view to inflicting damage
on assets under Red protection. The quantity 1 − ψ is suitable as a discount rate.
Should an external threat to Red also exist, then the discount rate should be taken as
the product of Red and Blue’s “survival” probabilities for a single time unit.

(b) Note that should Ωj contain some state ωj as in (iii) above, then if there exists ǫ > 0
such that

Pj(x, ωj) ≥ ǫ, x ∈ Ωj \ {ωj}, 1 ≤ j ≤ N, (9)

we can take discount rate β to be equal to one in the above. Under (9) it continues
to be possible to construct an equivalent decision process in the form of a discounted
reward semi-Markov multi-armed bandit.

(c) The model presented in (i)–(iv) above is rich enough to accommodate a range of
assumptions about whether and how Blue might withdraw from the conflict. One sce-
nario has Blue j’s death triggering withdrawal of the Blue force with some probability
ψj, 1 ≤ j ≤ N . Scenarios in which individuals may withdraw while under fire are
considered in Models 1 and 3 of Section 3.

(d) Suppose now that individual alive Blues leave the conflict (possibly breaching Red’s de-
fences) while not under fire from Red with probability η. Distinct Blues leave indepen-
dently of each other. This modification to the above models is technically far-reaching
and the optimisation problem for Red now becomes a restless bandit problem. Whittle
(1988) introduced restless bandits as an extension of Gittins’ (1979,1989) multi-armed
bandits in which projects can evolve (i.e. targets leave the conflict) when inactive (i.e.
not under fire). Restless bandits are likely intractable (see Papadimitriou and Tsitsik-
lis (1999)) and Whittle proposed a class of index heuristics derived from Lagrangian
relaxations of the original optimisation problem. For a problem in which this feature
of Blue withdrawal is incorporated into a model with discount rate β then a suitable
index for Blue j may be inferred from an argument based on pairwise interchanges.
For this index, replace the quantity in (7) by

S̃j(x, τ) = 1 − E [{β(1 − η)}τ I {Xj(τ) 6= ωj} |Xj(0) = x]

and then develop index G̃j(x) as

G̃j(x) = max
τ

{

Rj(x, τ)/S̃j(x, τ)
}

, x ∈ Ωj. (10)

A policy based on the indices in (10) (used as in the statement of Theorem 1) should
perform strongly. See Glazebrook et al. (2004).
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In Section 3 we illustrate the above by presenting three models, each of which present
salient features of combat scenarios.

3 Index policies for a Range of Single Conflicts with

Disengagement

Each of the models presented in this section conform to (i)–(iv) of Section 2. Hence a single
Red shooter faces N Blues which may do her harm. At every point in the conflict she may
shoot at a Blue or decide to suspend active engagement.

3.1 Model 1 – Red learns about the nature of Blue targets

Suppose that Blues come in B types and that Red has imperfect information about the Blues
she is facing. Note that “type” designation here may reflect any Blue characteristics which
are relevant to determining outcomes as the conflict proceeds. Red’s uncertainty about Blue
is expressed through N independent prior distributions Π1, Π2, . . . , ΠN which summarise
her beliefs before shooting starts. Hence Πj

b is the prior probability that Red assigns to the
event “Blue number j is of type b”, 1 ≤ j ≤ N, 1 ≤ b ≤ B.

We assume here that the type of a Blue does not change through the conflict. At each
time t = 0, 1, 2, . . . at which Red is alive she either targets a single Blue or disengages
from the conflict. The latter option, when taken at time t, yields a return of βtRd. If a
Blue is targeted, then conditional upon the event that the Blue concerned is actually of type
b, Red has a probability ρb of killing Blue while there is a probability θb that she herself
is killed during the engagement. Observe that both Blue and Red are subject to attrition.
Further, there is a probability φb that a Blue of type b withdraws from the conflict following
an unsuccessful shot by Red. Red always has perfect information about whether each Blue
is still present and also whether alive or dead. This optimistic assumption is relaxed in
Section 3.3. Hence the model calls for the inclusion of state ωj within Ωj as mentioned in
Section 2(iii) above. All shooting outcomes are assumed independent. Should Red kill a
type b Blue with her tth shot then she gains a return βtRb. Red’s goal is to maximise the
expected return from Blues killed and from disengagement prior to her own destruction.
The expectation concerned is taken both with respect to Red’s prior beliefs as well as over
realisations of the process. Note that, if all θb’s are (strictly) positive then we are permitted
the choice β = 1 since an appropriate version of the condition in (9) will be met. If, further,
Rb = 1, 1 ≤ b ≤ B, then Red’s goal is the maximisation of the expected number of Blues
killed aggregated with any (future) return from disengagement.

A crucial feature of the model concerns Red’s capacity to update her beliefs about the
Blues she is facing in the light of past engagements by using Bayes’ Theorem. In particular,
if Blue j has been targeted in n engagements, has not withdrawn and (along with Red) is
still alive (note that these are the only event types of relevance for future decision-making)
then the posterior distribution Πj,n summarising Red’s updated beliefs about Blue j is given
by

Πj,n
b =

Πj
b(1 − ρb)

n(1 − θb)
n(1 − φb)

n

∑B

d=1 Πj
d(1 − ρd)n(1 − θd)n(1 − φd)n

, 1 ≤ b ≤ B. (11)
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For notational simplicity, we shall refer to the denominator in (11) as D(j, n).
This problem may be represented within the general formulation of Section 2 (i)–(iv) as

follows:

(i) State space Ωj is taken to be N ∪ {ωj} ∪ {∗j}, where ∗j is the state entered when a
still alive Blue j withdraws from the conflict. If Xj(t) = n ∈ N, then at time t, Blue
j has been targeted in n engagements with Red, all of which have been inconclusive
(neither killed), and has not withdrawn.

(iii) Should action aj be chosen at t when Xj(t) = n then, following the resulting engage-
ment a transition to Xj(t+ 1) occurs according to Markovian law Pj where

Pj(n, n+ 1) = P (neither Red nor Blue j killed and Blue remains in the conflict)

= D(j, n+ 1)/D(j, n);

Pj(n, ωj) = P (Blue j killed but not Red)

=
B
∑

b=1

Πj
bρb(1 − ρb)

n(1 − θb)
n+1(1 − φb)

n/D(j, n);

Pj(n, ∗j) = P (neither Red nor Blue j killed and Blue leaves the conflict)

=
B
∑

b=1

Πj
bφb(1 − ρb)

n+1(1 − θb)
n+1(1 − φb)

n/D(j, n);

and

Pj(n, ωj) = P (Red killed) =
B
∑

b=1

Πj
bθb(1 − ρb)

n(1 − θb)
n(1 − φb)

n/D(j, n). (12)

The expected return gained from a Blue kill in the engagement in (iii) above is given by

Rj(n) =
B
∑

b=1

Πj
bRbρb(1 − ρb)

n(1 − θb)
n(1 − φb)

n/D(j, n), n ∈ N. (13)

With the above specifications the index Gj(n), appropriate for Blue j in state n ∈ N, may
be computed straightforwardly from (8). Red’s optimal policy is to target next the still alive
and still present Blue with maximal index up to the time of her death or the point at which
all still alive and still present Blues have index less than the disengagement return Rd. In
the latter event, Red disengages. Note that if at time t = 0 all Blues have index less than
Rd, Red does not engage the Blues at all.

In order to understand index structure, consider a “one-step index” Hj(n) defined by

Hj(n) =

∑B

b=1 Πj
b(1 − ρb)

n(1 − θb)
n(1 − φb)

nRbρb
∑B

b=1 Πj
b(1 − ρb)n(1 − θb)n(1 − φb)n{1 − β + βθb}

. (14)

It is straightforward to establish the following:
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(1) IfHj(n) is decreasing in n, it then follows that Gj(n) = Hj(n), n ∈ N. If this behaviour
holds good for all Blues then Red’s optimal shooting policy is quasi-myopic (a one-
step look ahead rule). Here indices decrease through to Blue’s destruction or departure
and consequently the optimal index policy will tend to involve Red making frequent
changes to the Blue targeted. In reality, set-up times would impose a penalty upon
Red for such a policy. Glazebrook, Kirkbride and Ruiz (2005) propose modifications
to indices which take account of switching penalties and/or times. Such modifications
can be applied to all of the models discussed in this paper, although strict optimality
is no longer achieved.

(2) If Hj(n) is increasing in n, then the index Gj(n) will take the form

∑B

b=1 Πj
b(1 − ρb)

n(1 − θb)
n(1 − φb)

nRbρb{1 − β(1 − ρb)(1 − θb)(1 − φb)}
−1

∑B

b=1 Πj
b(1 − ρb)n(1 − θb)n(1 − φb)n{(1 − β + βθb)[1 − β(1 − ρb)(1 − θb)(1 − φb)]−1}

and will itself be increasing in n. If this behaviour holds good for all Blues then
Red, will in an optimal policy, persist in targeting individual Blues in turn until each
is destroyed or withdraws. Note that in this event any disengagement by Red must
either happen at t = 0 (no engagement at all) or immediately following the destruction
or departure of one of the Blues.

Comments

(a) The one-step index Hj(n) in (14) and the formula given in (2) above may both be
thought of (somewhat crudely) as weighted averages (with respect to the posterior
distribution) of a return/exposure index

Rbρb{1 − β + βθb}
−1

for Blues of type b. This index is high when Rb and ρb are large and when θb is small.
It is plainly such Blue types which Red should target early. Note the dependence of
this quantity on θb. Plainly, Red should avoid targeting Blues with large associated
θ-values as such engagements are high risk for her and her early demise will preempt
the possibility of accumulating further returns. Note that in real circumstances the
probability θb may be decreased by a reactive manoeuvre(s) by Red. Her success in
such conflicts can depend upon sensor and communication properties which are only
implicitly modelled here;

(b) While the above material has been presented for the case of a finite number of Blue
types B in the interests of simplicity, it may be extended to cases in which type space is
countable or continuous without difficulty. The underlying decision process continues
to have a countable state space.

3.2 Model 2 – Red inflicts cumulative damage upon Blue

The distinctive feature of Model 2 is that the N Blues targeted by Red suffer cumulative
damage during successive engagements. This is a step in the direction of shooting problems
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with targets whose characteristics evolve (degrade) dynamically. We shall here make the
simplifying assumption that an engagement consists of a shot by Red at Blue j, say, followed
by a retaliatory strike from the Blue targeted. Further, a more severely damaged Blue will be
progressively less lethal to Red. Should a Blue’s damage be sufficient to render it harmless,
it is deemed to have been killed. To express this, we assume that each Blue can be in any
one of D states, labelled {1, 2, . . . , D} and that this state is observable without error by
Red. As state d runs from 1 to D it represents increasing degrees of damage with D = ωj

corresponding to Blue’s death. The Markovian law P j determines how Blue j evolves to
higher damage states under successive attacks from Red, while θj(d) is the probability that
Blue j can kill Red with a shot when in damage state d, where P j

dl = 0, l < d, and θj(D) = 0.
As in Model 1, a disengagement option of value Rd is always available to Red. We make the
following natural assumptions:

Assumptions

(1) For all j,
∑D

l=m P
j
dl is increasing in d for each choice of m ∈ {d, d+ 1, . . . , D};

(2) For all j, θj(d) is decreasing in d with θj(D − 1) > 0.

Assumption (1) states that, following any engagement, Blue’s new damage state is
stochastically increasing in its old damage state. Assumption (2) states that Blue j be-
comes less lethal to Red as it is increasingly damaged. The condition θj(D − 1) > 0 allows
us to make the choice β = 1 since condition (9) will then be met.

The general formulation of Section 2 (i)-(iv) can be adapted to this case as follows:

(i) State space Ωj is {1, 2, . . . , D} with D = ωj.

(iii) Should action aj be chosen at t when Xj(t) = d ∈ {1, 2, . . . , D − 1} then, following
the resulting engagement between Red and Blue j a transition to Xj(t + 1) occurs
according to Markovian law Pj where

Pj(d, l) = P (engagement inconclusive, with Blue’s damage d→ l)

= P j
dl{1 − θj(l)}, d ≤ l ≤ D − 1;

Pj(d,D) = P (Blue killed but not Red) = P j
dD;

and

Pj(d, ωj) = P (Red killed) =
D−1
∑

l=d

P j
dlθj(l).

The expected return from the engagement in (iii) above is given by

Rj(d) = βRjP
j
dD, d ∈ {1, 2, . . . , D − 1},

where we assume that the reward Rj is received when Blue j enters state D.
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With the above specifications the index Gj(d) appropriate for Blue j in damage state
d ∈ {1, 2, . . . , D − 1} may be easily computed. Red’s optimal policy is again to target next
the still alive Blue with maximal index up to the time of her death or the point at which
all still alive Blues have index no greater than the disengagement return Rd. In the latter
event, Red disengages.

To develop index structure, suppose that at time t = 0, Blue j is in damage state
d ∈ {1, 2, . . . , D − 1} and that Red engages with Blue j until one or the other is dead.
Write T j

d for the time at which the conflict ends and Ij
d for the indicator taking value 1 if

the engagement ends with Blue j’s death and 0 if it concludes with Red’s demise. The key
quantity

Zj
d = E

(

βT
j

d Ij
d

)

may be interpreted as the probability that Red survives the engagement and satisfies the
recursion

Zj
d = βP j

dD + β

D−1
∑

m=d

P j
dm{1 − θj(m)}Zj

m

= β

D
∑

m=d

P j
dm{1 − θj(m)}Zj

m,

where we take Zj
D = 1. A proof of the following result may be found in the on-line appendix.

It makes use of a self-consistency result for Gittins indices first enunciated by Nash (1979).

Theorem 2

(i) The quantity Zj
d is increasing in d, for each j, 1 ≤ j ≤ N .

(ii) The index Gj(d) for Blue j in damage state d is given by

Gj(d) = RjZ
j
d(1 − Zj

d)
−1, d ∈ {1, 2, . . . , D − 1}, 1 ≤ j ≤ N,

and is increasing in d.

Comments

(a) Note that the Blue index described in Theorem 2 has the feature that it is guaranteed
to increase after each engagement through to the demise of one or other party. Further,
it is the appropriate reward rate measure based on the assumption that Blues should
be continuously engaged until killed. That our model should produce optimal policies
of this character is natural since Blue’s accumulating damage through his engagements
not only brings his own death closer (Assumption (1)), but also makes him progressively
less lethal to Red (Assumption (2)). Hence it is clear that Red should continue shooting
at a partly damaged Blue and the index policy guarantees that this is so. Red will
here only choose disengagement following the destruction of one of the Blues or at time
t = 0.
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(b) To see how the index Gj(d) depends upon Blue j’s lethality, consider two extreme
cases. Suppose first that Blue j is lethal right up to its own destruction, namely

θj(d) ∼= 1, l ≤ d ≤ D − 1.

It then follows that

Zj
d
∼= βP j

dD

and hence that

Gj(d) ∼= βRjP
j
dD{1 − βP j

dD}
−1. (15)

Note that the numerator in (15) is the expected return from a single shot (only) by
Red at Blue j. In these circumstances, any fire from Red is a gamble that Blue j
will be killed with a single shot. Suppose now that Blue j poses very little retaliatory
threat to Red in that

θj(d) ∼= 0, 1 ≤ d ≤ D − 1.

Consider the quantities {Z̃j
d, 1 ≤ d ≤ D − 1} satisfying the recursions

Z̃j
d = βP j

dD + β
D
∑

m=d

P j
dmZ̃

j
m, 1 ≤ d ≤ D − 1, Z̃j

D = 1. (16)

We now have

Gj(d) ∼= RjZ̃
j
d(1 − Z̃j

d)
−1, (17)

a version of the index in Theorem 2 computed on the basis that Red will not be
killed (other than by some external threat) in the conflict. Red’s only concern here
is the speed with which Blue j can be killed and the return Rj claimed. It follows
straightforwardly from (16) that the index in (15) will be smaller than that in (17).

3.3 Model 3 – ‘Shoot-look-shoot’ for Red

The next goal is to give the reader some insight concerning the potential of our mod-
elling/solution approach by introducing developments of Model 1 of considerable practical
military import. The general scenario and Πj

b, Rb, ρb and β are all as before. However, now
suppose that after every shot by Red, the targeted Blue is inspected and categorised (with
error) according to Blue target type and alive/dead. Write δ ∈ {1, 2, . . . , B} × {alive,dead}
for a generic classification. We have that

P [Blue judged to be δ|Blue is alive of type b] = ηδb

P [Blue judged to be δ|Blue is dead of type b] = ηδb

where 1 ≤ b ≤ B. Also suppose that Red’s vulnerability depends upon whether the targeted
Blue is alive or dead. We use θb for the probability that Red is killed during an engagement
in which she targets a Blue of type b who is still alive. This becomes θb (typically less than
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θb) if the targeted Blue is truly dead. We also use φb for the probability that an alive Blue
of type b withdraws from the conflict following an unsuccessful shot by Red. This becomes
φb if the Blue concerned is truly dead (rendered ineffective). Blues rendered ineffective by
Red will certainly wish to withdraw if they are able to do so. While Red may be uncertain
regarding whether a Blue is alive or dead, she has no such uncertainty regarding a Blue’s
presence or absence.

Red now gathers information about the Blues she is facing through the series of engage-
ments in a more complicated way than for Model 1. Index policies will remain optimal, but
the index structure will be more complex and simple closed forms should certainly not be
expected. Consider Blue target j with prior Πj. At time t, if Red is still alive and Blue j
still present then we require sufficient statistics from the history of Red’s past engagements
with targeted Blue j. These will determine Red’s posterior distribution for this Blue. They
are:

(a) the number of previous engagements targeting Blue j (n);

(b) the outcomes of Red’s subsequent inspections (δ = {δ1, δ2, . . . , δn}).

We take these sufficient statistics as Blue j’s state at t while Red is alive and Blue j
present and write in vector notation Xj(t) = (n, δ). Note that we do not use the Blue
identifier j in the data representation (n, δ) to ease the notational burden. Red’s posterior
probability, given the history (n, δ), that Blue j is of type b and is still alive is proportional
to

Πj
b(1 − ρb)

n(1 − θb)
n(1 − φb)

n

(

n
∏

l=1

ηδlb

)

≡ Πj
bPb(n, δ) ≡ Πj

bPb{Xj(t)}. (18)

Red’s posterior probability, given this history, that Blue j is of type b but is now dead is
proportional to

Πj
b

n
∑

k=1

(1 − ρb)
k−1ρb(1 − θb)

k(1 − θb)
n−k(1 − φb)

k−1(1 − φb)
n−k+1

(

k−1
∏

l=1

ηδlb

)(

n
∏

l=k

ηδlb

)

≡ Πj
bP b(n, δ) ≡ Πj

bP b{Xj(t)}, (19)

as before. Hence, given the history summarised by Xj(t), Red’s posterior probabilities for
Blue j are given by

P [Blue j is alive and of type b|Xj(t)] =
Πj

bPb{Xj(t)}
∑B

d=1 Πj
d[Pd{Xj(t)} + P d{Xj(t)}]

,

1 ≤ b ≤ B, (20)

and

P [Blue j is dead and of type b|Xj(t)] =
Πj

bP b{Xj(t)}
∑B

d=1 Πj
d[Pd{Xj(t)} + P d{Xj(t)}]

,

1 ≤ b ≤ B. (21)

The formulation of Section 2 (i)-(iv) yields the following scheduling problem:
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(i) State space Ωj is the set of all possible histories (n, δ). Since in general under this
model, Red can never be certain that Blue j has been killed, there is no state ωj.

(iii) Suppose that action aj is chosen at t when Xj(t) = (n, δ). If Red is not killed and
Blue j does not withdraw, we have a state transition of the form

(n, δ) = Xj(t) → Xj(t)(δ) ≡ {n+ 1, (δ, δ)}

with probability

(

B
∑

b=1

Πj
b[Pb{Xj(t)}{(1 − ρb)(1 − θb)(1 − φb)ηδb + ρb(1 − θb)(1 − φb)ηδb}

+ P b{Xj(t)}(1 − θb)(1 − φb)ηδb]

)(

B
∑

b=1

Πj
b[Pb{Xj(t)} + P b{Xj(t)}]

)−1

. (22)

If Red is killed then Xj(t+ 1) = ωj. This happens with probability

∑B

b=1 Πj
b[Pb{Xj(t)}θb + P b{Xj(t)}θb]

∑B

b=1 Πj
b[Pb{Xj(t)} + P b{Xj(t)}]

. (23)

The expected return gained from a Blue kill in the engagement in (iii) above is given by

Rj(n, δ) =

∑B

b=1 Πj
bPb{Xj(t)}Rbρb

∑B

b=1 Πj
b

[

Pb{Xj(t)} + P b{Xj(t)}
] . (24)

With the above specifications we may proceed to compute the index Gj(n, δ) appropriate for
Blue j in state (n, δ). The authors recommend an adapted version of the “restart-in-(n, δ)”
approach to index computation proposed by Katehakis and Veinott (1987). See Glazebrook
and Greatrix (1995) and refer to the first author for full details. Red will again target the
Blue with maximal index until all indices are less than disengagement return Rd.

4 Modelling future opportunities – the nature of Red

disengagement

Red will wish to disengage from any conflict if the value she places upon surviving “to fight
another day” requires it. In Sections 2 and 3 we simply denoted this value Rd. However, the
assignment of such a value implies that Red has some view of the future and (in particular) of
the opportunities for securing enemy kills which it will bring. We now propose two possible
models for the targets which Red will face as a process extended over time and discuss the
implications for Red’s decision-making, particularly with regard to disengagement.

4.1 The future as a sequence of intense Blue raids

Here Red’s future will consist in confronting a sequence of discrete intense raids by Blue.
These raids may be identical in character or, more generally, may be drawn at random from
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some finite raid space R. Each member of R identifies the details of a single conflict type of
the kind described in Section 2 and in Models 1–3 of Section 3. In particular, it will specify
the character (and number) of Blues to be faced. Suppose that successive raids are drawn
from R in an i.i.d. fashion according to the positive probabilities {σr, r ∈ R}. Let G(R)
denote the maximal initial index (assumed finite) of any Blue appearing in any member
of R. Whenever Red is presented with a new Blue raid, she is able to determine its type
r ∈ R and must decide how to shoot during the raid and when to disengage from shooting.
Suppose that the times between successive raids (i.e. between Red’s disengagement from one
raid and the commencement of the next) form a sequence of i.i.d. positive-valued random
variables whose distribution is that of the random variable T . Write

m = E
(

βT
)

.

It will simplify matters if we suppose that β and m are both (strictly) less than one for
the purposes of this discussion. Consider a scenario in which the first raid faced by Red is
at time zero. Denote Red’s maximised expected total return from time zero but before the
determination of the type of the first raid by V (m). The stationarity of the model implies
that in each raid, the (undiscounted) value which Red should place on disengagement is
mV (m) = Rd. Plainly, from the discussion and results of Sections 2 and 3, in any raid
Red will optimally shoot at Blues according to an appropriate index policy and will only
disengage when all remaining Blue targets have indices which are less than mV (m).

In order to develop ideas we shall need the following notation: consider a policy for Red
during a raid of type r ∈ R in which she shoots according to an index policy and disengages
when all Blue indices are less than x ∈ R

+. The best (reward maximising) level of x is the
optimal disengagement level. If the raid begins at 0, write τr(x) for the time of Red’s death
or disengagement, whichever comes first. Also use Ir(x) for the indicator which is 0 if the
raid ends with Red’s death and is 1 otherwise. Finally Rr(x) is the expected (discounted)
return gained from Blue kills during the raid. From the above discussion we may assert that

V (m) =
∑

r∈R

σr

[

Rr{mV (m)} + E
[

βτr{mV (m)}Ir{mV (m)}
]

mV (m)
]

≥
∑

r∈R

σr

[

Rr(x) + E
{

βτr(x)Ir(x)
}

mV (m)
]

, x ∈ R
+. (25)

The following result is a consequence of (25), the foregoing discussion and the theory of
Gittins indices. A proof may be found in the on-line appendix.

Theorem 3

(i) Red’s maximised total expected return is given by

V (m) = max
x∈R+

{

∑

r∈R

σrRr(x)

}{

∑

r∈R

σr

[

1 −mE
{

βτr(x)Ir(x)
}]

}−1

, (26)

and is increasing in m with the maximum in (26) achieved at the optimum disengage-
ment level x = mV (m);
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(ii) Let {Tn, n ∈ N} be a sequence of non-negative-valued r.v.’s with mn = E
(

βTn
)

↑
1, n → ∞. It will follow that {V (mn), n ∈ N} and {mnV (mn), n ∈ N} are both in-
creasing sequences with

lim
n→∞

V (mn) = lim
n→∞

mnV (mn) = G(R). (27)

Comments

In Theorem 3 and the following observations we fix all aspects of the model, save only the
choice of T and the consequential value ofm. Ifm ∼= 0 then it must be that the times between
successive raids are large and the gains from future raids consequently heavily discounted.
When this is the case

V (m) ∼= max
x∈R+

∑

r∈R

σrRr(x), (28)

where the maximisation in (28) is of the expected return from a single raid. It is obvious
(and, indeed, is a consequence of Theorem 3(i)) that the maximum in (28) is achieved at
x = 0. Hence Red will be reluctant to disengage from any such conflict in the absence of
future value.

In contrast, if m ≈ 1 then from Theorem 3, the maximum in (26) is achieved atmV (m) ≈
G(R). Hence when returns from future raids are subject to light discounting, Red should be
very selective about the Blues she targets. In the limit as m approaches 1, Red disengages
as soon as there are no available targets of index value at least equal to the maximal initial
value G(R). Theorem 3 makes formal the notion that as the frequency of raids (measured
by m) increases, Red becomes progressively more selective about the Blues she targets and
disengages earlier from every raid type.

Note finally that for any fixedm, V (m) may be computed by a form of DP value iteration.
The following result may be established using Theorem 3 together with arguments based on
monotone mappings. A proof may be found in the on-line appendix. We use fn for an n-fold
application of function f .

Lemma 4 The function f : R
+ → R

+, defined by

f(x) =
∑

r∈R

σr

[

Rr(mx) + E
{

βτr(mx)Ir(mx)
}

mx
]

, x ∈ R
+

is such that

lim
n→∞

fn(0) = V (m).

4.2 Poisson arrivals of multiple Blue types

In contrast to the sporadic periods of intense activity envisaged in (4.1), we now suppose
that Red faces a Poisson stream of Blue targets over time. As we shall see, the insights we
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derive regarding disengagement are qualitatively similar to those in the preceding subsec-
tion. Suppose now that each Blue target belongs to one of C classes with distinct members
of the same class having identical characteristics, but experiencing independent outcomes.
Individual Blue targets are as in Section 2 and in Models 1–3 of Section 3. Blues from class
c ∈ C ≡ {1, 2, . . . , C} arrive according to a Poisson stream with rate λc, with streams from
distinct classes independent. We write Λ =

∑

c∈C λc for the total arrival rate and G(C) for
the maximal initial index from the C classes.

When there are Blues present, Red may choose to shoot at one of them (which will
take a single unit of time) or she may choose to disengage and wait for further targets to
arrive. Should Red choose to disengage then she must wait an exp(Λ) period of time before
further Blues arrive. At that point she may either resume shooting or remain disengaged.
Note that in the former case and under an optimal policy Red will never again shoot at
any Blues which were present at an earlier decision to disengage. Write V (λ, β) for the
expected return achieved by Red up to her death when adopting an optimal policy for
shooting/disengagement and when no targets are present at time zero. We use

W (λ, β) ≡ (Λ − ln β)(Λ)−1V (λ, β)

for the equivalent quantity when zero is taken as the time of arrival of the first Blue tar-
get. Exploiting and extending the observation in Section 2 that our core models (without
arrivals) may be regarded as (semi-Markov) multi-armed bandits, Red’s problem may be
modelled as a semi-Markov branching bandit problem in which Red’s disengagement option
has a fixed index value equal to V (λ, β). While it is true that the indices solving Red’s
shooting/disengagement problem will now in general depend upon the vector λ of arrival
rates, the target ordering implied by the indices is rarely different from that for the equiva-
lent closed case λ = 0. See Fay and Glazebrook (1992) who discuss precisely the closeness
to optimality of a so-called “no arrivals” index heuristic. Hence choosing between the Blue
targets currently present on the basis of indices of the kind described in Sections 2 and 3
will be close to optimal for Red. Note also that the value of G(C) is not λ-dependent.

Consider a situation in which a single Blue from class c is present at time zero. If Red
shoots optimally from time zero but disengages as soon as all indices are less than x ∈ R

+,
then Rc(x) is the expected return from Blue kills prior to first disengagement, τc(x) is the
time of Red’s death or first disengagement (whichever comes first) and Ic(x) is the indicator
which is 0 if Red is dead at τc(x) and which is 1 otherwise. The argument yielding the
following result is similar to that which gave Theorem 3. In Theorem 5 we write c̄ for (one
of) the class(es) achieving G(C).

Theorem 5

(i) Red’s maximised total expected return is given by

V (λ, β) = Λ(Λ − ln β)−1 max
x∈R+

{

C
∑

c=0

λcRc(x)

}(

C
∑

c=0

λc

[

1 − Λ(Λ − ln β)−1E
{

βτc(x)Ic(x)
}]

)−1

,

with the maximum achieved at the optimum disengagement level x = V (λ, β);

(ii) V (λ, β) is increasing componentwise in λ. If λc̄ → ∞ (with other components of λ

fixed) then V (λ, β) → G(C).
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Comments

(a) Similar comments to those following Theorem 3 apply. If Λ is close to 0 (Blue targets
arrive sporadically) then Red should engage almost all of them. If, however, there are
copious supplies of targets from class c̄ then Red should be very selective and only
engage those whose indices are no less than G(C).

(b) It is certainly possible to model futures for Red other than those in (4.1) and (4.2).
These include a hybrid of the above models of compound Poisson type in which intense
Blue raids arrive according to a Poisson process.

5 Numerical Study

We report on the outcome of a numerical study whose aim is to give the reader some sense
of the reward advantages to be gained by the adoption by Red of an optimal (index) policy
for shooting and also to quantify the value of disengagement in a range of scenarios. Below
are reported results for three problem sets (1-3) chosen to represent a range of operational
alternatives.

For each set, we report first on the rewards gained by Red under a range of policies for
a one-off conflict with Blue which has no disengagement option (equivalently, Rd = 0). All
cases studied are instances of Model 1 in (3.1) with N = 10 (ten Blue targets) and B = 5
(five Blue types). The discount rate β (Red survival probability per unit of time) is taken
to be 0.95 throughout. Table 1 contains details of the Blue types for each problem. Note
that φb = 0, 1 ≤ b ≤ 5, namely that in these examples Blues do not withdraw under fire.

PROBLEM SET 1 PROBLEM SET 2 PROBLEM SET 3
b ρb θb Rb ρb θb Rb ρb θb Rb

1 0.8 0.10 60 0.9 0.10 100 0.9 0.2 50
2 0.7 0.15 70 0.8 0.05 125 0.7 0.3 125
3 0.6 0.08 80 0.5 0.01 250 0.5 0.4 150
4 0.5 0.05 90 0.6 0.20 750 0.3 0.5 500
5 0.4 0.40 200 0.4 0.40 1000 0.1 0.6 1000

Table 1: Details of the Blue types for each problem set

The simulation study of one-off conflicts consists of 18 × 106 runs – with 106 runs being
conducted for each of six different policies for Red for each of the three problem sets. For
each of the runs for each problem set a prior for Red is set as follows: the ten Blue targets
are grouped into five pairs. One of the ith pair has an assigned prior probability of 0.75 for
Blue type i while the other has an assigned probability of 0.50, 1 ≤ i ≤ 5. The remaining
prior probabilities are obtained by drawing independently from a U(0, 1) distribution and
normalising appropriately. For each individual run, actual Blue types are determined by
drawing from the appropriate prior. The six shooting policies for Red are as follows:

(I) Index (IN) – This is the policy which maximises the expected return earned by Red
before her death;
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(II) Myopic (MY) – Here Red’s policy is to shoot next at whichever Blue is still alive and
offers her the highest expected one-stage return. Hence, the quantity in (13) is used
as a calibrating index for Blue j;

(III) Survival (SU) – Here Red’s next shot is targeted in such a way as to give the largest
probability of surviving the engagement. Hence, the quantity 1 − Pj(n, ωj) (see (12))
is used as a calibrating index for Blue j;

(IV) Exhaustive (EX) – Here Red adopts the best policy among those in which she shoots
continuously at each Blue targeted until either party to the engagement is killed. This
optimisation problem calls for a simple ordering of the Blue targets and may also
be formulated as a multi-armed bandit. Red should shoot at Blues in the order of
decreasing values (i.e., largest first) of the quantities

∑B

b=1 Πj
bRbρb{1 − β(1 − ρb)(1 − θb)}

−1

∑B

b=1 Πj
b(1 − β + βθb){1 − β(1 − ρb)(1 − θb)}−1

, 1 ≤ j ≤ 10;

(V) Random (RA) – At each stage, Red chooses between the still-alive Blues at random,
with all Blue targets equally likely;

(VI) Round Robin (RR) – Red cycles around the Blue targets (which are still alive) in
numerical order. The first target is chosen at random.

Policy Mean LQ Med UQ NBK
IN 299.42 149.82 295.57 427.78 4.72
MY 206.71 0.00 190.00 321.77 2.21

PROBLEM
SU 298.91 157.70 286.65 427.05 4.76

SET
EX 299.10 149.82 295.17 427.27 4.71

1
RA 249.60 85.50 215.39 372.80 3.50
RR 249.94 85.50 215.93 373.71 3.51

IN 1126.04 621.60 1026.55 1587.03 4.29
MY 931.25 0.00 950.00 1433.43 2.17

PROBLEM
SU 1061.75 488.54 1018.21 1473.53 4.97

SET
EX 1125.96 621.60 1026.21 1586.25 4.29

2
RA 973.66 317.30 919.59 1446.61 3.54
RR 978.83 350.31 912.90 1447.20 3.58

IN 259.10 0.00 118.75 475.00 0.91
MY 258.19 0.00 47.50 475.00 0.80

PROBLEM
SU 218.45 47.50 160.31 273.13 1.99

SET
EX 258.13 0.00 118.75 475.00 0.91

3
RA 224.25 0.00 118.75 327.16 1.18
RR 225.17 0.00 118.75 333.09 1.23

Table 2: Summary of Red’s returns and numbers of Blues killed using six different shooting
policies for Red for three problem sets

Table 2 contains summaries of the 18 × 106 runs conducted. For each choice of pol-
icy/problem set it gives a statistical summary of the 106 returns earned by Red and records
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the mean return, the lower quartile (LQ), median (Med) and upper quartile (UQ). The final
column records the mean number of Blues killed (NBK). As predicted by the theory, IN
dominates the other policies with respect to the mean return gained. Note also that the
problem set-ups are such that in every case IN operates very similarly to at least one other
policy. For problem set 1 the policies (IN, SU, EX) are very close; in set 2 this is true
of (IN, EX) and in set 3 of (IN, MY, EX). The closeness of IN and EX is not a universal
feature of Model 1 and is present here because our priors reflect reasonably strong prior
beliefs on Red’s part as to which type each Blue target is. The very poor performance of
MY for sets 1 and 2 is rooted in its indifference to the issue of Red’s vulnerability. In set 3,
SU is overly cautious and leads Red to overlook high gains in favour of survival. In these
cases Red would be better off choosing Blue targets at random (or in a round robin fashion).
Unsurprisingly, policy SU dominates the final column (NBK) and operates in such a way as
to favour numbers of Blue kills rather than the values thereof.

The second part of the study is an exploration of the value to Red of disengagement.
To progress we continue to use the problem sets above but now suppose that Red faces a
Blue target process consisting of a sequence of identical conflicts in the manner of subsection
(4.1). For a range of values of m between 0.25 and 0.95, an estimate of Red’s optimal total
expected return from targeting/disengagement, namely V̂ (m), is obtained using a hybrid
approach involving the value iteration of Lemma 4 and simulation. These values are then
deployed in a simulation study which estimates and compares Red’s returns when shooting
and disengaging from each conflict optimally with those obtained when Red shoots optimally
but never disengages and only proceeds to later conflicts if she survives earlier ones.

m V̂ (m) Mean LQ Med UQ MND
0.25 301.52 301.45 149.82 295.46 427.80 301.23
0.50 303.64 303.99 149.82 295.90 428.58 303.52

PROBLEM 0.75 308.15 308.19 149.82 295.57 435.32 305.88
SET 0.80 310.03 310.04 149.82 295.57 437.16 305.90

1 0.85 314.06 313.88 149.82 295.58 450.24 306.68
0.90 320.63 320.57 149.82 296.83 463.67 307.16
0.95 340.83 340.65 157.70 327.40 499.15 307.51

0.25 1134.67 1134.06 621.60 1025.57 1590.71 1133.88
0.50 1143.20 1143.42 621.60 1026.94 1597.20 1142.58

PROBLEM 0.75 1151.98 1152.84 621.60 1028.10 1601.79 1151.83
SET 0.80 1154.01 1154.57 621.60 1028.36 1603.71 1153.34

2 0.85 1167.15 1168.13 621.60 1051.95 1654.72 1155.26
0.90 1193.74 1194.11 621.60 1087.46 1696.47 1157.58
0.95 1234.78 1234.70 624.39 1138.92 1774.00 1158.69

Table 3: Summary of Red’s returns using both optimal disengagement (Mean,LQ,Med,UQ)
and no disengagement (MND) for two problem sets

Table 3 contains summaries of the outcomes of 14× 106 runs conducted for problem sets
1 and 2. For each choice of m-value/problem set it gives the value of V̂ (m) together with a
statistical summary of the 106 returns earned by Red when deploying optimal disengagement
(i.e. disengage when all current indices fall below mV̂ (m)). This summary includes the
mean return (which also estimates V (m)), the lower quartile (LQ), median (Med) and upper
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quartile (UQ). The final column gives an estimate of the best mean return achievable by
Red if she never disengages (MND). When comparing values of V̂ (m) (or Mean) with those
of MND it is clear that for these problem sets the benefits of disengagement increase with
m and can become considerable if m ∼= 1. This is usually, but not always the case. In an
equivalent study for problem set 3, V̂ (0.95) was just 0.1% larger than V̂ (0.25). Here, Red’s
death comes quickly, conflicts are short and there is little opportunity for disengagement.
Even when m = 0.95, if Red disengages optimally she only exercises that option in 1.8% of
conflicts. For problem set 3, then, it is the choice of Blue targets which is the critical issue
(see Table 2).
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